On singular values of matrices with independent rows

نویسندگان

  • S. Mendelson
  • A. Pajor
چکیده

We present deviation inequalities of random operators of the form 1 N ∑N i=1 Xi ⊗ Xi from the average operator E(X ⊗ X), where Xi are independent random vectors distributed as X, which is a random vector in R or in `2. We use these inequalities to estimate the singular values of random matrices with independent rows (without assuming that the entries are independent).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Row Products of Random Matrices

Let ∆1, . . . ,∆K be d × n matrices. We define the row product of these matrices as a d × n matrix, whose rows are entry-wise products of rows of ∆1, . . . ,∆K . This construction arises in certain computer science problems. We study the question, to which extent the spectral and geometric properties of the row product of independent random matrices resemble those properties for a d × n matrix ...

متن کامل

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

The Probabilistic Estimates on the Largest and Smallest q-Singular Values of Pre-Gaussian Random Matrices

We study the q-singular values of random matrices with pre-Gaussian entries defined in terms of the `q-quasinorm with 0 < q ≤ 1. Mainly we study the decay of the lower and upper tail probabilities of the largest q-singular value s 1 , when the number of rows of the matrices becomes very large. Furthermore, we also give probabilistic estimates for the smallest q-singular value of pre-Gaussian ra...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005